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Abstract. An algebra is entropic if its basic operations are homomorphisms.

The paper is focused on representations of such algebras. We prove the fol-

lowing theorem: An entropic algebra without constant basic operations which
satisfies so called Szendrei identities and such that all its basic operations of

arity at least two are surjective is a subreduct of a semimodule over a com-

mutative semiring. Our theorem is a straightforward generalization of Ježek’s
and Kepka’s theorem for groupoids. As a consequence we obtain that a mode

(entropic and idempotent algebra) is a subreduct of a semimodule over a com-
mutative semiring if and only if it satisfies Szendrei identities. This provides a

complete solution to the problem in mode theory asking for a characterization

of modes which are subreducts of semimodules over commutative semirings.
In the second part of the paper we use our theorem to show that each entropic

cancellative algebra is a subreduct of a module over a commutative ring. It

extends a theorem of Romanowska and Smith about modes.

1. Introduction

An algebra (A,Ω) is entropic if each basic operation ω ∈ Ω is a homomorphism
from (An,Ω) into (A,Ω), where n is the arity of ω. This is equivalent to the
satisfaction of all entropic identities

(εµ,ω) µ(ω(x1
1, . . . , x

1
n), . . . , ω(xm

1 , . . . , xm
n ))

≈ ω(µ(x1
1, . . . , x

m
1 ), . . . , µ(x1

n, . . . , xm
n )),

where µ ∈ Ω and m is its arity. (Semi)modules over commutative (semi)rings are
entropic algebras. The main aim of this article is to show that many entropic
algebras are in fact quite close to these examples. We use the symbol E to denote
the variety of entropic algebras (of a fixed similarity type).

An efficient ways of describing the structure of an algebra is to embed it into
another one, usually with a better known and richer structure. The paper contains
two results of this sort.

Firstly, we prove that if an entropic algebra has no constant basic operations, its
non-unary basic operations are onto and if it satisfies Szendrei identities, then it is
a subreduct of a semimodule over a commutative semiring (Theorem 11).

Let us clarify the notions which appear in the previous sentence. An algebra
(A,Ω) is a reduct of an algebra (A,Φ) if each operation from Ω is a term operation
of the algebra (A,Φ). Therefore taking a reduct is a partial forgetting of the
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algebraic structure. A subreduct is a subalgebra of a reduct. Thus our task is to
enrich the algebraic structure of considered algebras.

For a basic operation ω ∈ Ω and natural numbers 1 6 i, j 6 n, where n is the
arity of ω, consider the identity

(σi,j
ω ) ω(ω(x1
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n
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where πi
j is a permutation of variables which transposes xi

j with xj
i and leaves other

variables fixed. As an example σ1,2
ω , where ω is ternary, is given by

ω(ω(x1
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3
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3
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Here only framed variables change their positions. Note that if the arity of ω is
two, then the identities σ1,2

ω and εω,ω coincide. All σi,j
ω are called Szendrei identities

(they appeared in the paper [35] by Á. Szendrei) and algebras satisfying them are
called Szendrei algebras. We use the symbol SZE to denote the variety of Szendrei
entropic algebras.

Theorem 11 is connected to the following problem posed by A. Romanowska (see
[24, p. 543] and [21, Problem 8.11]):

Problem 1. Is each mode a subreduct of a semimodule over a commutative semi-
ring?

A mode is an algebra (A,Ω) without constant basic operations which is entropic
and idempotent, meaning that it satisfies all idempotent identities

ω(x, . . . , x) ≈ x,(ιω)

where ω ∈ Ω. While entropic algebras are characterized by the fact that all their
term operations are homomorphisms, modes are characterized by the property that
all their polynomial operations are homomorphisms.

It is straightforward to verify that each subreduct of a semimodule over a commu-
tative semiring satisfies Szendrei identities. Thus Problem 1 was split by N. Dojer
into two:

Problem 2 (Problem 1 in [4]). Is every mode a Szendrei mode?

Problem 3 (Problem 2 in [4]). Is every Szendrei mode a subreduct of a semimodule
over a commutative semiring?

Problem 2 was solved negatively in [31], where it was shown that a free mode
of rank two with a basic operation of arity at least three does not satisfy Szendrei
identities. Later [14] a family of non-Szendrei modes was found among differential
modes. In fact, it appeared that Szendrei differential modes form quite a narrow
class comparing to the variety of differential modes [18]. Theorem 11 gives a positive
solution to Problem 3 (Corollary 12). Thus a complete solution to Problem 1 is
obtained.

Our second main result is that, under some cancellativity condition, an entropic
algebra is a subreduct of a module over a commutative ring (Theorem 29). In
fact the ring depends on cancellativity condition. If the condition is stronger,
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then the ring has more invertible elements. For the standard cancellativity the
ring is generated by invertible elements. Interestingly, Theorem 29 has a relatively
easy proof if we additionally assume that considered algebra has an idempotent
element (see the proof in case 2), while in the proof of general case we need to use
Theorem 11.

The theory of entropic algebras is developed mostly for the groupoid case [12].
Modes were investigated in [24] and earlier in [22]. The most recent survey is [21]
and the older ones are [20, 28].

Representations of entropic algebras have quite a long history. We finish this
introduction with a sketch of it.

One of the first result about entropic algebras is the Bruck-Murdoch-Toyoda
theorem [2, 17, 36] which says that for an entropic (in their terminology “abelian”)
quasigroup (Q, ·) there is an abelian group (Q,+,−, 0) with two commuting auto-
morphisms f, g and an element q ∈ Q such that x·y = f(x)+g(y)+q. In particular,
an entropic quasigroup is isotopic to an abelian group. T. Evans [1, 5] generalized
the Bruck-Murdoch-Toyoda theorem and showed that for an entropic algebra (A,ω)
with one n-ary basic operation ω and having certain regularity properties there is a
commutative monoid (A,+, 0) with pairwise commuting endomorphisms f1, . . . , fn

and an element a ∈ A such that ω(a1, . . . , an) = f1(a1) + . . . + fn(an) + a for
a1, . . . , an ∈ A. The conclusion seems to be considerably weaker than that of the
Bruck-Murdoch theorem. However, if we assume that (A,ω) is an n-quasigroup,
then the addition becomes a group operation and all homomorphisms f1, . . . , f1

become automorphisms of (A,+). Note that the above results for (n-)quasigroups
have the following generalization [24, Corollary 6.2.6]: Each Mal’cev entropic alge-
bra is polynomially equivalent to a module over a commutative ring. This is a conse-
quence of the well known Smith-Gumm theorem [27, Theorem 418][8, Theorem 4.7]:
A Mal’cev algebra is abelian (central in [27]) if and only if it is polynomially equiv-
alent to a module.

A different kind of representation was given by J. Ježek and T. Kepka [11, 12].
They showed that for an entropic (this time authors use the name “medial”)
groupoid (G, ·) satisfying G · G = G there is a commutative monoid (M,+, 0)
with two commuting automorphisms f, g such that G ⊆ M and x · y = f(x) + g(y)
for any x, y ∈ G. Therefore such groupoid is a subreduct of a semimodule over a
commutative semiring with two invertible generators. This gives a positive solution
to Problem 1 in the groupoid case. Note that Theorem 11 is a straightforward gen-
eralization of Ježek’s and Kepka’s result. It is worth explaining how the condition
G ·G = G appeared. J. Ježek and T. Kepka wanted to classify all simple entropic
groupoids. The authors considered having a good representation theorem useful
while working on this task. One may check that indeed all simple groupoids have
surjective basic operation. However, according to our knowledge, the problem of
classification of simple entropic groupoids is still open.

In [13] J. Ježek and T. Kepka generalized the above theorem and simplified
the proof significantly. This generalization reaches far beyond our interest in this
paper, but one can derive a corollary which is important for us. If an algebra with
one surjective n-ary basic operation, where n > 2, is Szendrei and entropic, then
it is a subreduct of a semimodule over a commutative semiring with n invertible
generators. The technique used in the proof of our Theorem 11 is based on the
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proof of this result presented in [13]. Some technical tricks are invented to deal
with many basic operations, though.

Concerning Problem 1 for general modes, some work was done in [23, 24, 25,
26, 37, 38] by A. B. Romanowska, J. D. H. Smith and A. Zamojska-Dzienio. Their
technique, though not universal, gave interesting results. For example, modes in
the Mal’cev product of a quasivariety of cancellative Ω-modes and the variety of
Ω-semilattices embed as subreducts into semimodules over certain commutative
rings (Corollary 7.8.5 in [24]). More precisely, these semimodules are not semi-
modules in our sense because they do not satisfy the identity 0x = 0 (see next
Section). They are algebras in the regularization of the variety of modules over
a certain commutative rings. A crucial tool used in the proof of this fact is the
Romanowska-Smith theorem which says that each cancellative mode is a subreduct
of an affine space, the full idempotent reduct of a module over a commutative ring
(see [24, Section 7.7] and [23]). Our Theorem 29 is an extension of this result.

And lastly we would like to recall another interesting theorem due to J. Ježek
and T. Kepka [12, Proposition 6.1.1]. A groupoid (G, ·) is a division groupoid if
all its left and right multiplications are surjective, and (G, ·) is regular if it sat-
isfies the quasi-identities xu ≈ xv → yu ≈ yv and ux ≈ vx → uy ≈ vy. Note
that abelian groupoids are regular. The theorem states that each entropic regular
division groupoid is polynomially equivalent to a module over a commutative ring.

2. Basics

We assume that the reader is familiar with basic algebraic concepts such as free
algebras, satisfaction of identities, congruences, modules etc. [3, 15, 24]. By N we
denote the set of natural numbers. We fix a similarity type τ : Ω → N. When we
consider algebras or terms not referring to their types we mean that their types
coincide with τ . In particular, if we write “the variety of entropic algebras” we
actually mean “the variety of entropic algebras of the type τ”.

It will be convenient to fix an infinite countable set X of variables. We assume
that X is disjoint from Ω. The set of terms with variables in X is denoted by
Term(X). The set of all variables occurring in a term t is denoted by arg(t). A
term t is linear if every variable in arg(t) occurs in t exactly once. An identity t ≈ s
is linear if both terms t, s are linear. An equational theory is linear if it has an
equational basis consisting of linear identities.

A valuation in algebra (A,Ω) is a mapping a : X → A; x 7→ ax. By the univer-
sality property for the absolutely free algebra (Term(X),Ω), for a valuation a in
(A,Ω), there is exactly one homomorphism ã : (Term(X),Ω) → (A,Ω) extending
a. For a term t we write t(a) instead of ã(t). A valuation in (Term(X),Ω) is
called a substitution. If u is a substitution, then t(u) denotes the term obtained by
substituting ux for x ∈ X in t.

We need basic information about semirings and semimodules [7, 9]. Semirings
“are” rings without subtraction. Precisely, a semiring is an algebra (S, +, 0, ·, 1)
such that (S, +, 0) is a commutative monoid, (S, ·, 1) is a monoid, the identities
0x = x0 = 0 are true and multiplication distributes over addition. A semiring is
commutative if its multiplication is commutative. The non-commutative semiring
(N〈V 〉,+, 0, ·, 1) of polynomials with non-commuting indeterminants in V and nat-
ural coefficients is a free semiring over V . One may construct it as follows: first
construct the free monoid (V ∗, ·, 1) over V , then construct the free commutative
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monoid (N〈V 〉,+, 0) over V ∗, and finally extend multiplication using 0x = x0 = 0
and distributivity. Similarly, we may represent a free commutative semiring over
V as the commutative semiring of polynomials with commuting indeterminants in
V and natural coefficients. It is denoted by (N[V ],+, 0, ·, 1). Let

¯ : (N〈V 〉,+, 0, ·, 1) → (N[V ],+, 0, ·, 1),

be the homomorphism extending the identity mapping on V . We will use it fre-
quently, so it will be convenient to write ᾱ instead of (̄α) for α ∈ N〈V 〉.

By a semimodule over a semiring (S, +, 0, ·, 1) we mean an algebra (N,+, 0, S),
where the unary operations determined by elements of S are endomorphisms of the
commutative monoid (N,+, 0) and moreover for x ∈ N , s1, s2 ∈ S

1x = x,

0x = 0,

(s1 · s2)x = s1(s2x),

(s1 + s2)x = s1x + s2x.

An element s of a commutative semiring (S, +, 0, ·, 1) is cancellable if for all
r, r′ ∈ S the equality rs = r′s implies r = r′, and is invertible if there is r ∈ S such
that rs = 1. In (N[V ],+, 0, ·, 1) all nonzero elements are cancellable. We will use
the following fact which may be proved as in the ring/module case.

Proposition 4. Let (S, +, 0, ·, 1) be a commutative semiring. Let U be a subset of
S, closed under multiplication and consisting only of cancellable elements.

(1) There exists a semiring of fractions (U−1S, +, 0, ·, 1) extending (S, +, 0, ·, 1)
in which every u ∈ U is invertible.

(2) If the basic operations of a semimodule (K, +, 0, S) corresponding to the
symbols from U are injective, then (K, +, 0, S) is a subreduct of some semi-
module (N,+, 0, U−1S).

If in point (2) of Proposition 4 the operations corresponding to the symbols from
U are bijective, then (K, +, 0, S) is a reduct of the semimodule (K, +, 0, U−1S).

If U = S − {0} then (U−1S, +, 0, ·, 1) is a semifield, that is a commutative
semiring with all nonzero elements invertible.

3. Strongly entropic algebras

Here strongly entropic algebras [32, 33] are recalled, and some of their basic
properties are presented.

Let us distinguish some subsets of Ω. For a natural number i let

Ωi = {ω ∈ Ω | τ(ω) = i},
Ω>i = {ω ∈ Ω | τ(ω) > i}.

In particular, Ω0 is the set of all nullary operation symbols and Ω>0 is the set of
all non-nullary operation symbols. The address a(t, y) of y ∈ X ∪ Ω0 in a term t
says how y is placed in t. The precise definition is as follows. Put

Σ =
{
(ω, i) | ω ∈ Ω>0 and 1 6 i 6 τ(ω)

}
.

Let
a: Term(X)× (X ∪ Ω0) → N〈Σ〉
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be the function defined inductively by

a(x, y) =

{
1 if y = x

0 if y 6= x

for x, y ∈ X ∪ Ω0, and further by

a(ω(t1, . . . , tτ(ω)), y) =
τ(ω)∑
i=1

(ω, i) a(ti, y)

for ω ∈ Ω>0.
Put ā = ¯◦ a. The set of identities t ≈ s satisfying the condition

(∀x ∈ X) ā(t, x) = ā(s, x)

forms an equational theory. The variety corresponding to this theory is denoted
by SE and its members are called strongly entropic algebras. Note that SE has a
linear equational basis [33, Proposition 3.2.].

For a set Y we define (N(Y ),+, 0, N[Σ]) to be the semimodule over the semiring
(N[Σ],+, 0, ·, 1) freely generated by the set Y . Elements of N(Y ) may be represented
as sums

∑
i β̄iyi, where βi ∈ Σ∗ and yi ∈ Y . We equip the set N(Y ) with operations

corresponding to symbols from Ω. Let

ω(p1, . . . , pτ(ω)) = (ω, 1)p1 + · · ·+ (ω, τ(ω))pτ(ω)

for ω ∈ Ω>0 and
o = 0

for o ∈ Ω0. By (P (Y ),Ω) we denote the subalgebra of (N(Y ),Ω) generated by Y .

Proposition 5 ([33, Proposition 3.1]). The algebra (N(Y ),Ω) belongs to SE.
Moreover, (P (Y ),Ω) is free in SE over Y .

Let
b: Term(X)× (X ∪ Ω0) → N〈Ω>0〉

and
b̄ : Term(X)× (X ∪ Ω0) → N[Ω>0]

be the mappings defined similarly to a and ā. Only replace each occurrence of (ω, i)
by ω in the definitions. A term t is isosceles if there is a word γ ∈ Ω∗>0 such that
for each y ∈ X ∪Ω0, b(t, y) = kγ for some k ∈ N. The word γ is called the trace of
t. This condition says that the term t has a very regular form. All variables and all
constants are on the same lowest level. On each level, except the lowest one, there
is exactly one operation symbol from Ω>0.

Lemma 6. Let s and t be linear isosceles terms. If an identity s ≈ t holds in SE,
then it also holds in SZE.

Proof. By entropicity we may assume that the traces of s and t coincide and that
there are no symbols of nullary operations in t and s. Indeed, if there are such
symbols we may assume that they are equal and substitute a new variable for
them. Then

s(x1, . . . , xn) = t(xπ(1), . . . , xπ(n)),
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where π is a certain permutation of the set {1, . . . , n} such that ā(t, xi) = ā(t, xπ(i)).
Each permutation is a composition of transpositions. Hence it is enough to consider
the identities of the form

u(x1, x2, x3 . . . , xn) = u(x2, x1, x3 . . . , xn),

where u is a linear isosceles term with a(u, x1) = α, a(u, x2) = β and ᾱ = β̄.
Now we proceed by the induction on the depth of u. If the depth is two, then the
assertion follows from Szendrei identities. If α and β have the same, say k-th letter,
then by entropicity we may assume that they have the same first letter. In such
case the assertion may be deduced by applying the inductive assumption to the
appropriate subterm of u. We will show that the remaining cases may be reduced
to this situation. So assume that the previous case does not hold and the depth of
u is greater than two. Let ω1 . . . ωm, m > 2, be the trace of u.

Case 1: ωk 6= ω1 for some k. Then α must be of the form (ω1, i)α′(ωk, l)α′′ and
β must be of the form (ω1, j)β′(ωk, l)β′′, where i 6= j. The reduction may be done
by applying entropicity to the subterm of u under the address (ω1, i) (or (ω1, j)).

Case 2: ω1 = · · · = ωm = ω. Assume that α = (ω, i)(ω, j)α′. If β = (ω, k)β′,
where k 6= j, then we may apply entropicity to the subterm of u under the ad-
dress (ω, k). So assume that β = (ω, j)(ω, k)β′. If k 6= i, then we may pro-
ceed as previously. Finally, in the remaining case, α = (ω, i)(ω, j)(ω, k)α′ and
β = (ω, j)(ω, i)β′(ω, k)β′′. Here the assumption that the depth of u is greater
than two comes out. Then we may do the reduction by applying entropicity to the
subterm of u under the address (ω, j)(ω, i). �

Lemma 7 ([33, Corollary 4.3]). Let t be a linear term such that the equality
b̄(t, x) = b̄(t, y) is valid for all x, y ∈ arg(t). Then there is an isosceles linear
term t′ such that the identity t ≈ t′ holds in E.

Lemma 8. For each linear term t there are an isosceles linear term t′ and a
substitution u of Ω>0-terms such that the identity t(u) ≈ t′ holds in E.

Proof. Let u : x 7→ ux be a substitution such that ux is an isosceles linear Ω>0-term
with the trace ∏

y∈arg(t)
y 6=x

b(t, y).

Moreover, we assume that arg(ux) ∩ arg(uy) = ∅ for distinct x, y ∈ X. Then the
term t(u) is linear. For all x, y ∈ arg(t) we have

b̄(t(u), x) = b̄(t(u), y).

Hence, by Lemma 7, there is a term t′ with desired properties. �

The following notation will be very useful in the next section, but we also use it
in the proof of the next proposition. For a term t, an algebra (A,Ω) and its element
a, let at : X → A be a valuation such that t(at) = a. Obviously such a valuation
neither has to exist nor has to be unique.

Proposition 9. Let (A,Ω) be a Szendrei entropic algebra with surjective basic
non-nullary operations. Then (A,Ω) is strongly entropic.
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Proof. Let s ≈ t be a linear identity such that ā(s, x) = ā(t, x) for all x ∈ X. We
will show that (A,Ω) satisfies s ≈ t. Applying Lemma 8 to the term s we obtain a
linear isosceles term s′ and a substitution u such that the identity s(u) ≈ s′ holds
in E. Note that the term t(u) satisfies the condition of Lemma 7. Hence there is
a linear isosceles term t′ such that the identity t(u) ≈ t′ holds in E. The identity
s′ ≈ t′ holds in SE. Thus, by Lemma 6, it holds in SZE.

Let a : X → A; x 7→ ax be a valuation and put by = (ax)ux
y for y ∈ arg(ux).

In particular, this means that ux(b) = ux(aux
x ) = ax. Note that the existence of

the valuations aux
x is ensured by the assumption from the proposition and the fact

that ux are Ω>0-terms. Then

s(a) = s(u)(b) = s′(b) = t′(b) = t(u)(b) = t(a).

So the identity s ≈ t holds in (A,Ω). �

The reader may check that Proposition 9 may be slightly strengthened by as-
suming only the surjectivity of the basic operations of arity at least 2. However,
we will not make a use of this fact.

Corollary 10. Szendrei modes are strongly entropic.

4. Subreducts of semimodules

Consider the semiring of fractions

(T,+, 0, ·, 1) = ((Σ>1
∗)−1N[Σ],+, 0, ·, 1),

where
Σ>1 = {(ω, i) | ω ∈ Ω>1 and 1 6 i 6 τ(ω)} = Σ− Ω1 × {1}.

This section is devoted to the proof of the following theorem.

Theorem 11. Let (A,Ω) be a Szendrei entropic algebra without constant basic
operations such that ω(A, . . . , A) = A for every ω ∈ Ω>1. There exists a semimodule
(N,+, 0, T ) over the commutative semiring (T,+, 0, ·, 1) such that for ω ∈ Ω and
a1, . . . , aτ(ω) ∈ A we have

ω(a1, . . . , aτ(ω)) = (ω, 1)a1 + · · ·+ (ω, τ(ω))aτ(ω).

We readily obtain the following consequence of Theorem 11.

Corollary 12. Every Szendrei mode is a subreduct of a semimodule over a com-
mutative semiring.

We start with considering a fixed Szendrei entropic algebra (A,Ω). We assume
that Ω0 = ∅ and ω(A, . . . , A) = A for all ω ∈ Ω.

Let (N(A),+, 0, N[Σ]), (N(A),Ω) and (P (A),Ω) be algebras defined as in previ-
ous section, where Y = A.

We introduce one more notation. It simplifies coding the proof and, we hope,
also reading it. Because A ⊆ N(A), the symbol t(b), where t is a term and b is a
valuation in (A,Ω), may be interpreted in two different ways: as the result of the
term operation in (A,Ω), or as the result of the term operation in (N(A),Ω), that
is

∑
x∈arg(t) ā(t, x)bx. In order to distinguish these two cases we will use symbol

tN (b) for the latter one. Note that, because (P (A),Ω) is a subalgebra of (N(A),Ω),
we do not need to introduce a special notation for term operations in (P (A),Ω).
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On the set N(A) we define a binary relations ↘ as follows. For p, q ∈ N(A) let
p ↘ q if there are w ∈ N(A), γ ∈ Σ∗, an element c ∈ A, a term t, and a valuation
ct such that

p = w + γ̄c and q = w + γ̄tN (ct).

Recall that ct : x 7→ ct
x is a valuation satisfying t(ct) = c. Let ↗ be the inverse

of ↘. Note that ↗ and ↘ are reflexive and closed under unary polynomials of
(N(A),+, N[Σ]). Thus

Θ = (↗ ∪ ↘)∞,

where R∞ denotes the transitive closure of R, is a congruence of (N(A),+, 0, N[Σ])
and of (N(A),Ω). Our aim is to show that (A,Ω) → (N(A),Ω)/Θ; a 7→ a/Θ is an
injective homomorphism. It is the core of the proof of Theorem 11. It will be done
in a series of lemmas.

Observe that p ∈ P (A) if and only if there are a (linear) term t and a val-
uation b such that p = tN (b). Note that if p ∈ P (A) and p ↘ q, then q ∈
P (A). The converse does not have to hold. Indeed, consider a binary term
t(x) = ω(ω(ω(x, x), x), ω(x, ω(x, x))). Its parsing tree is

ω

ω

ω

x x

x

ω

x ω

x x

and for a ∈ A we have

P (A) 3 tN (a) = [(ω, 1)(ω, 1)(ω, 1) + (ω, 1)(ω, 2) + (ω, 2)(ω, 1) + (ω, 2)(ω, 2)(ω, 2)]a

+ (ω, 1)(ω, 2)[(ω, 1) + (ω, 2)]a

↗ [(ω, 1)(ω, 1)(ω, 1) + (ω, 1)(ω, 2) + (ω, 2)(ω, 1) + (ω, 2)(ω, 2)(ω, 2)]a

+ (ω, 1)(ω, 2)b 6∈ P (A),

where ω(a, a) = b.

Lemma 13. Let t be a linear isosceles term, s be a term and γ ∈ Σ∗ be a word
such that ā(t, x) = γ̄ā(s, x) for all x ∈ arg(s). Then there exists a term t′ such that
t ≈ t′ holds in SE (also in SZE) and s is a subterm of t′ under the address γ.

Proof. By Lemma 7 we may assume that s is an isosceles term with the trace δ.
We may take t′ as an isosceles term with the trace γδ, where a(t′, x) = γ a(s, x) for
all x ∈ arg(s) and ā(t′, y) = ā(t, y) for all y ∈ arg(t). Obviously, t ≈ t′ holds in SE
and, by Lemma 6, it also holds in SZE. �

The importance of isosceles terms follows from the next lemma.

Lemma 14. Let p = tN (b) ∈ P (A) for some linear isosceles term t and some
valuation b. If p ↗ q, then q ∈ P (A).

Proof. Let
p = w + γ̄sN (cs) and q = w + γ̄c,
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where w ∈ N(A), γ ∈ Σ∗, s is a linear term and c ∈ A. For x ∈ arg(s) let x′ ∈ arg(t)
be a variable such that

ā(t, x′)bx′ = γ̄ā(s, x)cs
x.

Let s′ be a term obtained from s by replacing each variable x ∈ arg(s) by x′. Then
s′(b) = c and q = w + γ̄s′N (b). Terms t and s′ satisfy the condition from Lemma
13. Thus there exists a linear isosceles term t′ such that s′ is its subterm under the
address γ and the identity t ≈ t′ holds in SE. Thus, by Proposition 5, p = t′N (b).
Let t′′ be a term obtained from t′ by putting a new variable y, y 6∈ arg(t′), under
the address γ. Let b′x = bx for x 6= y and by = s′(b) = c. Then q = t′′N (b′) ∈ P (A).

�

Lemma 15. Let p ↗ q ↘ r. If p ∈ P (A), then there are p′, q′, r′ ∈ P (A) such that

p ↘∞ p′ ↗ q′ ↘ r′ ↗∞ r.

Proof. Let p = tN (b), where t is a linear term. There are two cases.
Case 1:

p =w + γ̄sN (cs),
q =w + γ̄c,

r =w + γ̄vN (cv).

By the reasoning from the beginning of the proof of Lemma 14, we may assume that
cs = b. By Lemma 8, there are an isosceles linear term t′ and a substitution u such
that the identity t′ ≈ t(u) holds in E. For each x ∈ X choose bux

x . The existence of
these valuations is guaranteed by the assumption that all basic operations of (A,Ω)
are surjective. Let b′ be a valuation such that b′y = (bux

x )y for y ∈ arg(ux) (note
that if x1 6= x2, then arg(ux1) ∩ arg(ux2) = ∅). Define

p′ =t(u)N (b′) = t′N (b′) = w′ + γ̄s(u)N (b′),

q′ =w′ + γ̄c,

r′ =w′ + γ̄vN (cv).

Here w′ is the appropriate element of N(A).
We have p ↘∞ p′ ↗ q′ ↘ r′ and p′ ∈ P (A). By Lemma 14, q′ ∈ P (A), and

thus r′ ∈ P (A). It remains to show that r′ ↗∞ r. It follows from the following
computation

w′ =
∑

y∈arg(t(u))
y 6∈arg(s(u))

ā(t(u), y)b′y =
∑

x∈arg(t)
x6∈arg(s)

ā(t, x)(ux)N (b′)

=
∑

x∈arg(t)
x6∈arg(s)

ā(t, x)(ux)N (bux
x ) ↗∞

∑
x∈arg(t)
x6∈arg(s)

ā(t, x)bx = w.

Case 2:

p =w + γ̄sN (cs) + δ̄d,

q =w + γ̄c + δ̄d,

r =w + γ̄c + δ̄vN (dv).

We may take
p′ = q′ = r′ = w + γ̄sN (cs) + δ̄vN (dv).

�
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Lemma 16. ↗ ◦ ↗ ◦ ↘⊆↗ ◦ ↘ ◦ ↗ and ↗ ◦ ↘ ◦ ↘⊆↘ ◦ ↗ ◦ ↘.

Proof. It is enough to prove the first inclusion. Let

p ↗ ◦ ↗ q ↘ r.

We may assume that p ↗ q does not hold. Then

p = w + γ̄sN (cs) + δ̄tN (dt) and

q = w + γ̄c + δ̄d.

Now either r = w′ + γ̄c + δ̄d, where w ↘ w′, and then

p ↗ w + γ̄sN (cs) + δ̄d ↘ w′ + γ̄sN (cs) + δ̄d ↗ r,

or r = w + γ̄c + δ̄vN (dv) and then

p ↗ w + γ̄sN (cs) + δ̄d ↘ w + γ̄sN (cs) + δ̄vN (dv) ↗ r.

�

Put
Ψ = ((↗ ∪ ↘) ∩ P (A)2)∞.

Lemma 17. If p ∈ P (A), q ∈ N(A) and p Θ q, then there is q′ ∈ P (A) such that

p Ψ q′ ↗∞ q.

Proof. By Lemma 16, there exists a natural number k such that

p ↘∞ ◦(↗ ◦ ↘)k◦ ↗∞ q.

We proceed by induction on k. If k = 0 the assertion is obvious. Assume that
k > 0 and that the assertion is true for k − 1. Let p1, p2, p3 be such that

p ↘∞ p1 ↗ p2 ↘ p3 (↗ ◦ ↘)k−1◦ ↗∞ q.

By Lemma 15, there are p′1, p
′
2, p

′
3 ∈ P (A) such that

p ↘∞ p′1 ↗ p′2 ↘ p′3 ↗∞ p3 (↗ ◦ ↘)k−1◦ ↗∞ q.

By Lemma 16
p′3 (↗ ◦ ↘)k−1◦ ↗∞ q.

By the inductive assumption there exists q′ ∈ P (A) such that

p′3 Ψ q′ ↗∞ q.

Finally p Ψ p′3 and the transitivity of Ψ yields p Ψ q′. �

Lemma 18. Ψ = Θ ∩ P (A)2.

Proof. Let p, q ∈ P (A) and p Θ q. By Lemma 17, there exists q′ such that p Ψ q′ ↗∞

q. But q, q′ ∈ P (A) yields (q, q′) ∈ Ψ. Hence p Ψ q. The converse inclusion is evi-
dent. �

Let idA denotes the equality relation on the set A.

Lemma 19. Θ ∩A2 = idA.
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Proof. By Proposition 5, the algebra (P (A),Ω) is free in SE over the set A. More-
over, by Proposition 9, the algebra (A,Ω) belongs to SE. Hence there exists the
unique homomorphism π : (P (A),Ω) → (A,Ω) such that π(a) = a for a ∈ A. More
precisely π is given by the assignment

π : tN (a) 7→ t(a).

Note that
↘ ∩ P (A)2 ⊆ ker(π).

Thus
Ψ ⊆ ker(π).

Let a, b ∈ A. By Lemma 18, if aΘ b, then aΨ b. Thus a = π(a) = π(b) = b. �

Lemma 20. If (ω, k)p Θ (ω, k)q, where ω ∈ Ω>1, then p Θ q.

Proof. First we prove that if (ω, k)p Θ r, then there exists r′ such that r = (ω, k)r′

and p Θ r′. If (ω, k)p ↘ r then the statement is evident. Assume now that

(ω, k)p = s + β̄

τ(µ)∑
i=1

(µ, i)ai and r = s + β̄a,

where µ(a1, . . . , aτ(µ)) = a in (A,Ω). If µ 6= ω then β̄ = (ω, k)β̄′, s = (ω, k)s′

and p = s′ + β̄′
∑

(µ, i)ai. Thus we may put r′ = s′ + β̄′a. Now let µ = ω. We
assumed that the arity of ω must be greater than one. Therefore there exists a
natural number l 6= k such that

(ω, k)p = s + β̄

τ(ω)∑
i=1
i 6=l

(ω, i)ai + β̄(ω, l)al.

Again β̄ = (ω, k)β̄′, s = (ω, k)s′ and r′ = s′ + β̄′a. Now the assertion follows by
induction.

Now if (ω, k)p Θ (ω, k)q, then (p, q′) ∈ Θ and (ω, k)q = (ω, k)q′ for some q′. But
then necessarily q = q′. �

The results obtained till now in this section easily give the conclusion of The-
orem 11 for algebra (A,Ω). Now we show that the assumption that operations
coresponding to symbols from Ω1 are onto is irrelevant. So let (A,Ω) be an algebra
satisfying the conditions from Theorem 11. Obviously all obtained results may be
applied to the reduct (A,Ω>1). Let (N>1(A),+, 0, N[Σ>1]) and Θ>1 be analogs
of (N(A),+, 0, N[Σ>1] and Θ respectively defined for (A,Ω>1). For every µ ∈ Ω1

define the corresponding operation on N>1(A) by

µ
(∑

γ̄iai

)
=

∑
γ̄iµ(ai),

where βi ∈ Σ∗>1, ai ∈ A.

Lemma 21. The relation Θ>1 is a congruence of (N>1(A),+, 0, N[Σ>1],Ω1). More-
over, the algebra (N>1(A),+, 0, N[Σ>1],Ω1)/Θ>1 is term equivalent to a semimod-
ule (N>1(A),+, 0, N[Σ]).
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Proof. For the first statement it is enough to show that if p, q ∈ N>1(A) and p ↘ q,
then µ(p) ↘ µ(q). Consider a valuation bt in (A,Ω>1) and let µ(bt) be a valuation
given by x 7→ µ(bt

x). By entropicity t(µ(bt)) = µ(b), and thus

µ(b) ↘ tN (µ(bt)) = µ(tN (bt)).

The general case follows from the fact that µ is an endomorphism of the semimodule
(N>1(A),+, 0, N[Σ>1]). The second statement is evident. �

Proof of Theorem 11. By Lemmas 19 and 21, algebra (A,Ω) is a subreduct of the
semimodule (N>1(A),+, 0, N[Σ])/Θ. Moreover, this semimodule, by Proposition 4
and by Lemma 20, is a subreduct of a semimodule (N,+, 0, T ). �

We end this section with a couple of comments.

Remark 22. Let (A,Ω) be any algebra without constants. Then (A,Ω) is a sub-
reduct of a semimodule over a commutative semiring if and only if Θ ∩ A2 = idA.
In Lemma 20 we did not use the assumption that basic operations are onto. Thus
(A,Ω) is a subreduct of a semimodule over a commutative semiring if and only if
it is a subreduct of a semimodule over (T,+, 0, ·, 1).

Remark 23. Note that (N,+, 0, T ) trivially satisfies the condition N + N = N .
Thus for p ∈ N and ω ∈ Ω>1 we have

p = p1 + · · ·+ pτ(ω)

= (ω, 1)(ω, 1)−1p1 + · · ·+ (ω, τ(ω))(ω, τ(ω))−1pτ(ω)

= (ω, 1)q1 + · · ·+ (ω, τ(ω))qτ(ω)

= ω(q1, . . . , qτ(ω))

for some pi ∈ N and qi = (ω, i)−1pi. Thus, a Szendrei entropic algebra is a sub-
reduct of a semimodule over a commutative semiring if and only if it is a subalgebra
of a Szendrei entropic algebra (B,Ω) satisfying ω(B, . . . , B) = B for ω ∈ Ω>1.

Remark 24. Theorem 11 is no longer true if we allow constants to appear in the
structure of a considered algebra. Let ({a, b},∨, b) be the algebra, where ({a, b},∨)
is a semilattice in which a < b. Assume that it is a subreduct of a semimodule
(M,+, 0, S). Then there are s, r ∈ S such that x ∨ y = rx + sy for x, y ∈ {a, b},
and b = 0. So

a = a + b = (ra + sa) + (rb + sb) = (ra + sb) + (rb + sa) = b + b = b,

a contradiction.

Remark 25. It is not true that each strongly entropic algebra without constants
and with at least one non-unary surjective basic operation is a subreduct of a
semimodule over a commutative semiring. Let (A, �, ◦) be an algebra, where (A, �)
is a strongly entropic groupoid which is not a subreduct of a semimodule over a
commutative semiring [12, Example 3.2.1.] and x ◦ y = x. Obviously (A, �, ◦) is
not a subreduct of a semimodule over a commutative semiring. With a {�, ◦}-term
t we associate a {�}-term t∗ given inductively by the rule: x∗ = x for x ∈ X,
t∗ = t∗1 if t = t1 ◦ t2, and t∗ = t∗1 � t∗2 if t = t1 � t2. Consider an identity s ≈ t,
where ā(s, x) = ā(t, x) for x ∈ X. Then ā(s∗, x) = ā(t∗, x) for x ∈ X. Thus, for a
valuation a : X → A, we obtain

s(a) = s∗(a) = t∗(a) = t(a).
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Hence (A, �, ◦) is strongly entropic.

Remark 26. Assume that an algebra (A,Ω) satisfies the conditions from The-
orem 11. With a set {ui(x) ≈ vi(x) | i ∈ I} of identities with one variable
we associate the congruence α of the semiring (T,+, 0, ·, 1) generated by the set
{(ā(ui, x), ā(vi, x)) | i ∈ I}. If (A,Ω) satisfies ui ≈ vi for all i ∈ I, then it is a
subreduct of a semimodule over (T,+, 0, ·, 1)/α. Indeed, if p =

∑
λkak ∈ N , where

(N,+, 0, T ) is the semimodule from Theorem 11, then

ā(ui, x)p =
∑

k

λkā(ui, x)ak =
∑

k

λkbi
k =

∑
k

λkā(vi, x)ak = ā(vi, x)p.

Here bi
k = ui(ak) = vi(ak). This fact may be in particular applied to Szendrei

modes for idempotent identities.

Remark 27. After presenting the proof of Theorem 11 in [32], D. Stanovský sim-
plified the proof of Corollary 12 [30]. This simplification is based on a more essential
use of idempotency.

5. Cancellativity

We need to recall the notions of M-cancellativity and M-polyquasigroup [33].
We will use them in the next section.

We fix one variable from the set X and denote it by v. The set Term(X) has a
monoid structure, where multiplication is given by

t(v, x1, . . . , xm) · s(v, y1, . . . , yn) = t(s(v, y1, . . . , yn), x1, . . . , xm)

and v is its neutral element.
Let S be the set of terms in Term(X) such that v occurs in them, that is

S = {t ∈ Term(X) | a(t, v) 6= 0}.
Note that (S, ·, v) 6 (Term(X), ·, v).

By a monoid of terms we mean a subset M of Term(X) satisfying
(M1) (M, ·, v) is a submonoid of (S, ·, v);
(M2) M is closed under substitution: if t(v, x1 . . . , xn) ∈M and

t1, . . . , tn ∈ Term(X)− S, then t(v, t1 . . . , tn) ∈M.
Let L be the set of all terms in Term(X) such that v occurs in them exactly

once and P be the set of all terms in which v occurs exactly once but always on
the rightmost place. Sets S, L and P are examples of monoids of terms.

We need to consider two more conditions.
(P) if Ω>1 6= ∅ then there exist a term η(x1, x2, x3) and distinct variables

y, z 6= v such that η(v, y, z), η(y, v, z) ∈M.
(Ax) For each ω ∈ Ω>1 there are an integer 1 6 i 6 τ(ω) and a variable z ∈ X

such that
ω(z, . . . , z, v, z, . . . , z) ∈M,

where v occurs in the i-th slot;
Note that x1, x2 have to occur in η while x3 does not. A monoid M of terms is
proper provided it satisfies condition (P). Monoids of terms S and L are proper,
and P is proper only if Ω>1 = ∅. All S,L,P satisfy (Ax).

A translation of an algebra (A,Ω) is a mapping

s( , a1, . . . , am) : A → A; x 7→ s(x, a1, . . . , am),
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where s(v, x1, . . . , xm) ∈ Term(X) and a1, . . . , am ∈ A. A mapping f : A → A is an
M-translation if there are a term s(v, x1, . . . , xm) ∈M and elements a1, . . . , am ∈ A
such that f = s( , a1, . . . , am).

An algebra is M-cancellative if all its M-translations are injective. For instance
an algebra is L-cancellative if and only if it is cancellative. An algebra is called an
M-polyquasigroup if all its M-translations are bijective.

The following theorem summarizes important for us facts obtained in [33, The-
orem 7.1 and Theorem 9.3].

Theorem 28. Let M be a monoid of terms. Then
(1) every M-cancellative strongly entropic algebra embeds into a strongly en-

tropic M-polyquasigroup;
(2) if M is proper then each entropic M-cancellative algebra is strongly en-

tropic and hence satisfies Szendrei identities.

Note that Proposition 4 may be deduced from Theorem 28 point (1).

6. Subreducts of modules

In this section we will show that for a proper monoid M of terms satisfying (Ax)
M-cancellative entropic algebras are subreducts of modules over commutative rings.

Firstly let us specify what kind of rings we are considering. For a monoid M of
terms let

Mv = ā(M, v).
The set Mv may be considered as the subset of the commutative ring of polyno-
mials (Z[Σ],+, 0, ·, 1) with indeterminants in Σ and integer coefficients. Note that
(Z[Σ],+, 0, ·, 1) is an integral domain and Mv is closed under multiplication. Define

(RM,+,−, 0, ·, 1) = (M−1
v Z[Σ],+,−, 0, ·, 1)

the ring of fractions of (Z[Σ],+,−, 0, ·, 1) with respect to the set Mv.

Theorem 29. Let M be a proper monoid of terms satisfying (Ax). If (A,Ω) is an
M-cancellative entropic algebra, then there exists a module (M,+,−, 0, RM) such
that for all ω ∈ Ω and a1, . . . , aτ(ω) ∈ A we have

ω(a1, . . . , aτ(ω)) = (ω, 1)a1 + · · ·+ (ω, τ(ω))aτ(ω).

Proof. The monoid M of terms is proper. Hence, by Theorem 28, the algebra
(A,Ω) embeds into an M-polyquasigroup. Thus in what follows we may assume
that A is already an M-polyquasigroup. The proof splits into three cases:

Case 1: Ω>1 = ∅
Let (M,+,−, 0) be the free abelian group over the set A − Ω0. Here we consider
Ω0 as a subset of A. Equivalently, (M,+,−, 0, Z) is the free module over the ring
of integers with basis A−Ω0. We equip the set M with an Ω-structure by defining

ω
(∑

ξjaj

)
=

∑
ξjω(aj) and o = 0,

where ξj ∈ Z, aj ∈ A and ω ∈ Ω1, o ∈ Ω0. Note that the set M has a natural
structure of a module over the ring (Z[Σ],+,−, 0, ·, 1), where the operation deter-
mined by a scalar (ω, 1) coincides with ω. In order to finish the proof in this case
it is enough to realize that for t(v) ∈ M the operation ā(t, v) is bijective on M .
It follows from the fact that (A,Ω) is an M-polyquasigroup, and thus the term
operation given by t is bijective on A, and hence on M .
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Case 2: Ω>1 6= ∅ and Ω0 6= ∅
The proof goes in a standard fashion (see [5] or [24, Section 7.7]). As M is
proper, there exist a term η(x1, x2, x3) and distinct variables y, z 6= v such that
η(v, y, z), η(y, v, z) ∈M. Because (A,Ω) is an entropic M-polyquasigroup we have
two isomorphisms

f : (A,Ω) → (A,Ω); a 7→ η(a, o, o),
g : (A,Ω) → (A,Ω); a 7→ η(o, a, o),

where o is a constant operation. Put

b + c = t(f−1(b), g−1(c)).

That provides a structure of an abelian group (A,+,−, 0) with o as a neutral
element. Indeed, we have (a+b)+(c+d) = (a+c)+(b+d) and a+o = o+a = a for all
a, b, c, d ∈ A. It readily yields the associativity and commutativity of +. Moreover,
because ω( , , o) is a quasigroup operation, + is an abelian group operation. To
get the structure of a module over the ring (Z[Σ],+,−, 0, ·, 1) first define

(µ, k)a = µ(0, . . . , 0, a, 0, . . . , 0),

where a is in the k-th slot, and next extend this definition in a natural way to
obtain operations corresponding to symbols from Z[Σ]. Algebras (A,Ω,+,−, 0) and
(A,+,−, 0, Z[Σ]) are term equivalent. Now for m ∈ Mv let t(v, x1, . . . , xn) ∈ M
be such that ā(t, v) = m. For b ∈ A we have mb = t(b, o, . . . , o). This yields that
the operation corresponding to m is bijective on A. Thus (A,Ω) is a reduct of
(M,+,−, 0, RM) = (A,+,−, 0, RM).

Case 3: Ω>1 6= ∅ and Ω0 = ∅.
Here the results from Section 4 will be applied. The notation introduced there will
be used as well. Because M satisfies (Ax) and (A,Ω) is an M-polyquasigroup, for
ω ∈ Ω>1 we have ω(A, . . . , A) = A. Thus, by Theorem 11 and 28 (2), the mapping
a 7→ a/Θ is an embedding from A into N(A)/Θ (see Remark 22).

Define a binary relation ΘM on the set N(A) by

p ΘM q ⇐⇒
{(
∃m ∈Mv, r ∈ N(A)

)
mp + r Θmq + r

}
.

This relation is a congruence of the semimodule (N(A),+, 0, N[Σ]). Indeed, if

mp + r Θmq + r and m′p′ + r′Θm′q′ + r′,

then

mm′(p + p′) + mr′ + m′r = m′(mp + r) + m(m′p′ + r′)

Θ m′(mq + r) + m(m′q′ + r′) = mm′(q + q′) + mr′ + m′r.

Moreover, if k ∈ N[Σ], then

mkp + kr = k(mp + r) Θ k(mq + r) = mkq + kr.

We claim that ΘM ∩ A2 = idA. So consider a, b ∈ A such that aΘM b. This
means that for some m ∈Mv and r ∈ N(A) we have

ma + r Θmb + r.

Assume that m = ā(t0, v), where t0(v, x0
1, . . . , x

0
i0

) ∈ M, and r =
∑l

k=1 γ̄kck,
where γk ∈ Σ∗ and ck ∈ A. For 1 6 k 6 l let tk(xk

0 , . . . , xk
ik

) be a term such
that ā(tk, xk

0) = γ̄k. Because M is proper, there exist a term η(x1, x2, x3) and
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distinct variables y, z 6= v such that η(v, y, z), η(y, v, z) ∈ M. Let δ = a(η, x1)
and ε = a(η, x2). Let s(x0, . . . , xl, z), be a term such that a(s, xk) = εkδεl−k and
s(x1, . . . , xk−1, v, xk+1, xl, z) ∈ M for all k 6 l. Such term may be constructed by
composing η with itself l times, and then by putting variables xk under the address
εkδεl−k for k 6 l, and the variable z under all other addresses. Define

t(v, x1
0, x

2
0 . . . , xl

0, x
0
1, . . . , x

0
i0 , x

1
1 . . . , xl

il
, z) = s(t0, t1, . . . , tl, z) ∈M.

Let d be any element of A. Recall that the symbol tN denotes the term operation
determined by the term t in (N(A),Ω). We have

tN (a, c1, . . . , cl, d, . . . , d) = δ̄ε̄lma + ε̄δ̄ε̄l−1γ̄1c1 + . . . + ε̄lδ̄γ̄lcl + p

= δ̄ε̄l(ma + r) + p

Θ δ̄ε̄l(mb + r) + p

= δ̄ε̄lmb + ε̄δ̄ε̄l−1γ̄1c1 + . . . + ε̄lδ̄γ̄lcl + p

= tN (b, c1, . . . , cl, d, . . . , d).

Here p = tN (0, . . . , 0, d, . . . , d), where 0 appears in the first l + 1 slots. This and
Lemma 19 yields that

t(a, c1, . . . , cl, d, . . . , d) = t(b, c1, . . . , cl, d, . . . , d) in (A,Ω).

Finally, by M-cancellativity of (A,Ω), we obtain a = b. This proves the claim.
Let (G(X),+, 0, N[Σ]) be the absolutely free algebra over the set X of the type of

semimodules over (N[Σ],+, 0, ·, 1). LetN ⊆ G(X) be the monoid of terms generated
by terms mv + x, where m ∈ Mv. The semimodule (N(A),+, 0, N[Σ])/ΘM is
strongly entropic and N -cancellative. Thus we can use Theorem 28 again to embed
it into a semimodule (M,+, 0, N[Σ]). This semimodule is an N -polyquasigroup,
and hence has a structure of the module (M,+,−, 0, RM). �

7. Categorical wrapping

The construction presented in the previous section provides a left adjoint functor.
Let V and W be two varieties of types τ : Ω → N and δ : Φ → N respectively.

By a tensor product of varieties V and W we mean the variety V ⊗ W of type
τ ∪̇δ : Ω∪̇Φ → N satisfying identities true in V , identities true in W and all εµ,ν ,
where µ ∈ Ω and ν ∈ Φ [6].

Let CMon be the variety of commutative monoids and SModS be the va-
riety of semimodules over a semiring (S, +, 0, ·, 1). We have the following term
equivalences of varieties

E ⊗CMon ' SModN[Σ] ' SE ⊗CMon.

Let U : E ⊗CMon → E be the forgetful functor and H be its left adjoint. For
a monoid M of terms consider the forgetful functor VM : ModRM → SModN[Σ],
with the variety of modules over (RM,+,−, 0, ·, 1) as a domain, and its left adjoint
KM. Now consider the following composition of adjunctions
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E
H //

MM

--

E ⊗ CMon
U

oo ' SModNC [Σ]

KM
//
ModRM

VM
oo

WM

ll
.

Theorem 30. Let M be a monoid of terms. Then the functor MM is a left adjoint
to the forgetful functor WM. Moreover, if M is proper and satisfies (Ax), then for
each M-cancellative entropic algebra (A,Ω) the unit of this adjunction

η(A,Ω) : (A,Ω) → WM(MM(A,Ω))

is injective.

A similar situation appeared in Section 4. The assignment (A,Ω) 7→ (N,+, 0, T )
described there may be considered as an object part of the functor from E into
SModT which is a left adjoint to an appropriate forgetful functor.

8. Discussion

In conclusion, we would like to discuss some problems which appeared during
the work on this article.

Recall that an algebra is quasi-affine if it is a subreduct of an algebra polyno-
mially equivalent to a module [19]. It may be proved that if entropic algebra is
quasi-affine, then it is quasi-affine over a commutative ring. Moreover, each quasi-
affine algebra without constants is a subreduct of a module [34]. These facts suggest
that the following question may have a positive answer.

Problem 31. Is it true that each quasi-affine entropic algebra (without constants)
is a subreduct of a module over a commutative ring?

Let M be a proper monoid of terms. Each M-cancellative entropic algebra is
quasi-affine [33, Theorem 8.6]. Here is a subproblem.

Problem 32. Let M be a proper monoid of terms. Is it true that every entropic
M-cancellative algebra is a subreduct of a module over a commutative ring?

Note that in the proof of Theorem 29 we used the fact that M satisfies condition
(Ax) only once, when we showed that the considered algebra is a subreduct of a
semimodule over a commutative semiring. Hence to show that Problem 32 has a
positive solution it would be enough to prove that each quasi-affine algebra over a
commutative ring without constants is a subreduct of a semimodule over a commu-
tative semiring. Note however that Remark 23 suggests that Problems 31 and 32
may have negative solusions.

A characterization of subreducts of (semi)modules over arbitrary (semi)rings is
a much easer issue. In fact each algebra without constants is a subreduct of a
semimodule [10]. As mentioned before, each quasi-affine algebra without constants
is a subreduct of a module [34].

The last problem concerns subreducts of vector spaces.

Problem 33. Characterize subreducts of vector spaces.
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[11] J. Ježek, T. Kepka, Semigroup representations of medial groupoids, Comment. Math. Univ.
Carolinae 22 (1981), 513-524.
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